a
    Ofm                     @  s,  d dl mZ d dlmZmZ d dlZd dlmZ d dlm	Z	 d dl
mZ d dlmZ d dlmZ e	rd d	lmZmZmZmZ d d
lmZmZ d dlmZmZmZ edZedZedZedZ ddeeee ddZ!edZ"edZ#dddee"e#ddZ$edZ%ddddddZ&dddd d!d"Z'dHd#d$d%d&d'Z(G d(d) d)eZ)G d*d+ d+e)Z*G d,d- d-e)Z+G d.d/ d/Z,G d0d1 d1e,Z-G d2d3 d3e,Z.G d4d5 d5eZ/G d6d7 d7e/Z0G d8d9 d9e0Z1G d:d; d;e/Z2G d<d= d=e0e2Z3G d>d? d?e/Z4G d@dA dAe4Z5G dBdC dCe4e2Z6ddDdEdFdGZ7dS )I    )annotations)ABCabstractmethodN)dedent)TYPE_CHECKING
get_option)format)pprint_thing)IterableIteratorMappingSequence)DtypeWriteBuffer)	DataFrameIndexSeriesa      max_cols : int, optional
        When to switch from the verbose to the truncated output. If the
        DataFrame has more than `max_cols` columns, the truncated output
        is used. By default, the setting in
        ``pandas.options.display.max_info_columns`` is used.aR      show_counts : bool, optional
        Whether to show the non-null counts. By default, this is shown
        only if the DataFrame is smaller than
        ``pandas.options.display.max_info_rows`` and
        ``pandas.options.display.max_info_columns``. A value of True always
        shows the counts, and False never shows the counts.a      >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
    >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values,
    ...                   "float_col": float_values})
    >>> df
        int_col text_col  float_col
    0        1    alpha       0.00
    1        2     beta       0.25
    2        3    gamma       0.50
    3        4    delta       0.75
    4        5  epsilon       1.00

    Prints information of all columns:

    >>> df.info(verbose=True)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Data columns (total 3 columns):
     #   Column     Non-Null Count  Dtype
    ---  ------     --------------  -----
     0   int_col    5 non-null      int64
     1   text_col   5 non-null      object
     2   float_col  5 non-null      float64
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes

    Prints a summary of columns count and its dtypes but not per column
    information:

    >>> df.info(verbose=False)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 5 entries, 0 to 4
    Columns: 3 entries, int_col to float_col
    dtypes: float64(1), int64(1), object(1)
    memory usage: 248.0+ bytes

    Pipe output of DataFrame.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:

    >>> import io
    >>> buffer = io.StringIO()
    >>> df.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260

    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big DataFrames and fine-tune memory optimization:

    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> df = pd.DataFrame({
    ...     'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6),
    ...     'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6)
    ... })
    >>> df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 22.9+ MB

    >>> df.info(memory_usage='deep')
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000000 entries, 0 to 999999
    Data columns (total 3 columns):
     #   Column    Non-Null Count    Dtype
    ---  ------    --------------    -----
     0   column_1  1000000 non-null  object
     1   column_2  1000000 non-null  object
     2   column_3  1000000 non-null  object
    dtypes: object(3)
    memory usage: 165.9 MBz    DataFrame.describe: Generate descriptive statistics of DataFrame
        columns.
    DataFrame.memory_usage: Memory usage of DataFrame columns.r   z and columns )klassZtype_subZmax_cols_subshow_counts_subZexamples_subZsee_also_subZversion_added_suba      >>> int_values = [1, 2, 3, 4, 5]
    >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
    >>> s = pd.Series(text_values, index=int_values)
    >>> s.info()
    <class 'pandas.core.series.Series'>
    Index: 5 entries, 1 to 5
    Series name: None
    Non-Null Count  Dtype
    --------------  -----
    5 non-null      object
    dtypes: object(1)
    memory usage: 80.0+ bytes

    Prints a summary excluding information about its values:

    >>> s.info(verbose=False)
    <class 'pandas.core.series.Series'>
    Index: 5 entries, 1 to 5
    dtypes: object(1)
    memory usage: 80.0+ bytes

    Pipe output of Series.info to buffer instead of sys.stdout, get
    buffer content and writes to a text file:

    >>> import io
    >>> buffer = io.StringIO()
    >>> s.info(buf=buffer)
    >>> s = buffer.getvalue()
    >>> with open("df_info.txt", "w",
    ...           encoding="utf-8") as f:  # doctest: +SKIP
    ...     f.write(s)
    260

    The `memory_usage` parameter allows deep introspection mode, specially
    useful for big Series and fine-tune memory optimization:

    >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6)
    >>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6))
    >>> s.info()
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 7.6+ MB

    >>> s.info(memory_usage='deep')
    <class 'pandas.core.series.Series'>
    RangeIndex: 1000000 entries, 0 to 999999
    Series name: None
    Non-Null Count    Dtype
    --------------    -----
    1000000 non-null  object
    dtypes: object(1)
    memory usage: 55.3 MBzp    Series.describe: Generate descriptive statistics of Series.
    Series.memory_usage: Memory usage of Series.r   z
.. versionadded:: 1.4.0
a  
    Print a concise summary of a {klass}.

    This method prints information about a {klass} including
    the index dtype{type_sub}, non-null values and memory usage.
    {version_added_sub}
    Parameters
    ----------
    verbose : bool, optional
        Whether to print the full summary. By default, the setting in
        ``pandas.options.display.max_info_columns`` is followed.
    buf : writable buffer, defaults to sys.stdout
        Where to send the output. By default, the output is printed to
        sys.stdout. Pass a writable buffer if you need to further process
        the output.
    {max_cols_sub}
    memory_usage : bool, str, optional
        Specifies whether total memory usage of the {klass}
        elements (including the index) should be displayed. By default,
        this follows the ``pandas.options.display.memory_usage`` setting.

        True always show memory usage. False never shows memory usage.
        A value of 'deep' is equivalent to "True with deep introspection".
        Memory usage is shown in human-readable units (base-2
        representation). Without deep introspection a memory estimation is
        made based in column dtype and number of rows assuming values
        consume the same memory amount for corresponding dtypes. With deep
        memory introspection, a real memory usage calculation is performed
        at the cost of computational resources. See the
        :ref:`Frequently Asked Questions <df-memory-usage>` for more
        details.
    {show_counts_sub}

    Returns
    -------
    None
        This method prints a summary of a {klass} and returns None.

    See Also
    --------
    {see_also_sub}

    Examples
    --------
    {examples_sub}
    zstr | Dtypeintstr)sspacereturnc                 C  s   t | d| |S )a  
    Make string of specified length, padding to the right if necessary.

    Parameters
    ----------
    s : Union[str, Dtype]
        String to be formatted.
    space : int
        Length to force string to be of.

    Returns
    -------
    str
        String coerced to given length.

    Examples
    --------
    >>> pd.io.formats.info._put_str("panda", 6)
    'panda '
    >>> pd.io.formats.info._put_str("panda", 4)
    'pand'
    N)r   ljust)r   r    r   O/var/www/ai-form-bot/venv/lib/python3.9/site-packages/pandas/io/formats/info.py_put_str%  s    r   float)numsize_qualifierr   c                 C  sB   dD ],}| dk r(| d| d|   S | d } q| d| dS )a{  
    Return size in human readable format.

    Parameters
    ----------
    num : int
        Size in bytes.
    size_qualifier : str
        Either empty, or '+' (if lower bound).

    Returns
    -------
    str
        Size in human readable format.

    Examples
    --------
    >>> _sizeof_fmt(23028, '')
    '22.5 KB'

    >>> _sizeof_fmt(23028, '+')
    '22.5+ KB'
    )bytesZKBMBGBTBg      @z3.1f z PBr   )r!   r"   xr   r   r   _sizeof_fmt?  s
    
r)   bool | str | None
bool | str)memory_usager   c                 C  s   | du rt d} | S )z5Get memory usage based on inputs and display options.Nzdisplay.memory_usager   )r,   r   r   r   _initialize_memory_usage^  s    r-   c                   @  s   e Zd ZU dZded< ded< eedddd	Zeed
dddZeeddddZ	eeddddZ
eddddZeddddZeddddddddZdS ) 	_BaseInfoaj  
    Base class for DataFrameInfo and SeriesInfo.

    Parameters
    ----------
    data : DataFrame or Series
        Either dataframe or series.
    memory_usage : bool or str, optional
        If "deep", introspect the data deeply by interrogating object dtypes
        for system-level memory consumption, and include it in the returned
        values.
    DataFrame | Seriesdatar+   r,   Iterable[Dtype]r   c                 C  s   dS )z
        Dtypes.

        Returns
        -------
        dtypes : sequence
            Dtype of each of the DataFrame's columns (or one series column).
        Nr   selfr   r   r   dtypesx  s    z_BaseInfo.dtypesMapping[str, int]c                 C  s   dS )!Mapping dtype - number of counts.Nr   r3   r   r   r   dtype_counts  s    z_BaseInfo.dtype_countsSequence[int]c                 C  s   dS )BSequence of non-null counts for all columns or column (if series).Nr   r3   r   r   r   non_null_counts  s    z_BaseInfo.non_null_countsr   c                 C  s   dS )z
        Memory usage in bytes.

        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        Nr   r3   r   r   r   memory_usage_bytes  s    z_BaseInfo.memory_usage_bytesr   c                 C  s   t | j| j dS )z0Memory usage in a form of human readable string.
)r)   r<   r"   r3   r   r   r   memory_usage_string  s    z_BaseInfo.memory_usage_stringc                 C  s2   d}| j r.| j dkr.d| jv s*| jj r.d}|S )Nr   deepobject+)r,   r8   r0   indexZ_is_memory_usage_qualified)r4   r"   r   r   r   r"     s    

z_BaseInfo.size_qualifierWriteBuffer[str] | None
int | Nonebool | NoneNonebufmax_colsverboseshow_countsr   c                C  s   d S Nr   )r4   rH   rI   rJ   rK   r   r   r   render  s    	z_BaseInfo.renderN)__name__
__module____qualname____doc____annotations__propertyr   r5   r8   r;   r<   r>   r"   rM   r   r   r   r   r.   g  s*   


r.   c                   @  s   e Zd ZdZd!ddddddZed	d
ddZedd
ddZedd
ddZedd
ddZ	edd
ddZ
edd
ddZdddddddd ZdS )"DataFrameInfoz0
    Class storing dataframe-specific info.
    Nr   r*   rF   r0   r,   r   c                 C  s   || _ t|| _d S rL   r0   r-   r,   r4   r0   r,   r   r   r   __init__  s    zDataFrameInfo.__init__r6   r2   c                 C  s
   t | jS rL   )_get_dataframe_dtype_countsr0   r3   r   r   r   r8     s    zDataFrameInfo.dtype_countsr1   c                 C  s   | j jS )z
        Dtypes.

        Returns
        -------
        dtypes
            Dtype of each of the DataFrame's columns.
        r0   r5   r3   r   r   r   r5     s    
zDataFrameInfo.dtypesr   c                 C  s   | j jS )zz
        Column names.

        Returns
        -------
        ids : Index
            DataFrame's column names.
        )r0   columnsr3   r   r   r   ids  s    
zDataFrameInfo.idsr   c                 C  s
   t | jS z#Number of columns to be summarized.)lenr\   r3   r   r   r   	col_count  s    zDataFrameInfo.col_countr9   c                 C  s
   | j  S )r:   r0   countr3   r   r   r   r;     s    zDataFrameInfo.non_null_countsc                 C  s   | j dk}| jj d|d S )Nr?   TrB   r?   )r,   r0   sumr4   r?   r   r   r   r<     s    
z DataFrameInfo.memory_usage_bytesrC   rD   rE   rG   c                C  s   t | |||d}|| d S )N)inforI   rJ   rK   )_DataFrameInfoPrinter	to_bufferr4   rH   rI   rJ   rK   printerr   r   r   rM     s    zDataFrameInfo.render)N)rN   rO   rP   rQ   rX   rS   r8   r5   r\   r_   r;   r<   rM   r   r   r   r   rT     s     rT   c                   @  s   e Zd ZdZdddddddZddddd	d
dddddddZeddddZeddddZeddddZ	eddddZ
dS )
SeriesInfoz-
    Class storing series-specific info.
    Nr   r*   rF   rU   c                 C  s   || _ t|| _d S rL   rV   rW   r   r   r   rX     s    zSeriesInfo.__init__)rH   rI   rJ   rK   rC   rD   rE   rG   c                C  s,   |d urt dt| ||d}|| d S )NzIArgument `max_cols` can only be passed in DataFrame.info, not Series.info)re   rJ   rK   )
ValueError_SeriesInfoPrinterrg   rh   r   r   r   rM     s    zSeriesInfo.renderr9   r2   c                 C  s   | j  gS rL   r`   r3   r   r   r   r;   $  s    zSeriesInfo.non_null_countsr1   c                 C  s
   | j jgS rL   rZ   r3   r   r   r   r5   (  s    zSeriesInfo.dtypesr6   c                 C  s   ddl m} t|| jS )Nr   )r   )Zpandas.core.framer   rY   r0   )r4   r   r   r   r   r8   ,  s    zSeriesInfo.dtype_countsr   c                 C  s   | j dk}| jj d|dS )zMemory usage in bytes.

        Returns
        -------
        memory_usage_bytes : int
            Object's total memory usage in bytes.
        r?   Trb   )r,   r0   rd   r   r   r   r<   2  s    	
zSeriesInfo.memory_usage_bytes)N)rN   rO   rP   rQ   rX   rM   rS   r;   r5   r8   r<   r   r   r   r   rj     s     rj   c                   @  s4   e Zd ZdZddddddZedd	d
dZdS )_InfoPrinterAbstractz6
    Class for printing dataframe or series info.
    NrC   rF   )rH   r   c                 C  s.   |   }| }|du rtj}t|| dS )z Save dataframe info into buffer.N)_create_table_builder	get_linessysstdoutfmtZbuffer_put_lines)r4   rH   Ztable_builderlinesr   r   r   rg   D  s
    z_InfoPrinterAbstract.to_buffer_TableBuilderAbstractr2   c                 C  s   dS )z!Create instance of table builder.Nr   r3   r   r   r   rn   L  s    z*_InfoPrinterAbstract._create_table_builder)N)rN   rO   rP   rQ   rg   r   rn   r   r   r   r   rm   ?  s   rm   c                   @  s   e Zd ZdZddddddddd	Zed
dddZeddddZeddddZed
dddZ	dd
dddZ
dddddZddddZdS )rf   a{  
    Class for printing dataframe info.

    Parameters
    ----------
    info : DataFrameInfo
        Instance of DataFrameInfo.
    max_cols : int, optional
        When to switch from the verbose to the truncated output.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    NrT   rD   rE   rF   )re   rI   rJ   rK   r   c                 C  s0   || _ |j| _|| _| || _| || _d S rL   )re   r0   rJ   _initialize_max_colsrI   _initialize_show_countsrK   )r4   re   rI   rJ   rK   r   r   r   rX   a  s
    z_DataFrameInfoPrinter.__init__r   r2   c                 C  s   t dt| jd S )z"Maximum info rows to be displayed.zdisplay.max_info_rows   )r   r^   r0   r3   r   r   r   max_rowsn  s    z_DataFrameInfoPrinter.max_rowsboolc                 C  s   t | j| jkS )zDCheck if number of columns to be summarized does not exceed maximum.)ry   r_   rI   r3   r   r   r   exceeds_info_colss  s    z'_DataFrameInfoPrinter.exceeds_info_colsc                 C  s   t t| j| jkS )zACheck if number of rows to be summarized does not exceed maximum.)ry   r^   r0   rx   r3   r   r   r   exceeds_info_rowsx  s    z'_DataFrameInfoPrinter.exceeds_info_rowsc                 C  s   | j jS r]   re   r_   r3   r   r   r   r_   }  s    z_DataFrameInfoPrinter.col_count)rI   r   c                 C  s   |d u rt d| jd S |S )Nzdisplay.max_info_columnsrw   )r   r_   )r4   rI   r   r   r   ru     s    z*_DataFrameInfoPrinter._initialize_max_colsrK   r   c                 C  s$   |d u rt | j o| j S |S d S rL   )ry   rz   r{   r4   rK   r   r   r   rv     s    z-_DataFrameInfoPrinter._initialize_show_counts_DataFrameTableBuilderc                 C  sR   | j rt| j| jdS | j du r,t| jdS | jr>t| jdS t| j| jdS dS )z[
        Create instance of table builder based on verbosity and display settings.
        re   with_countsFre   N)rJ   _DataFrameTableBuilderVerbosere   rK    _DataFrameTableBuilderNonVerboserz   r3   r   r   r   rn     s    
z+_DataFrameInfoPrinter._create_table_builder)NNN)rN   rO   rP   rQ   rX   rS   rx   rz   r{   r_   ru   rv   rn   r   r   r   r   rf   Q  s       rf   c                   @  sD   e Zd ZdZddddddddZd	d
ddZdddddZdS )rl   a  Class for printing series info.

    Parameters
    ----------
    info : SeriesInfo
        Instance of SeriesInfo.
    verbose : bool, optional
        Whether to print the full summary.
    show_counts : bool, optional
        Whether to show the non-null counts.
    Nrj   rE   rF   )re   rJ   rK   r   c                 C  s$   || _ |j| _|| _| || _d S rL   )re   r0   rJ   rv   rK   )r4   re   rJ   rK   r   r   r   rX     s    z_SeriesInfoPrinter.__init___SeriesTableBuilderr2   c                 C  s0   | j s| j du r t| j| jdS t| jdS dS )zF
        Create instance of table builder based on verbosity.
        Nr   r   )rJ   _SeriesTableBuilderVerbosere   rK   _SeriesTableBuilderNonVerboser3   r   r   r   rn     s    z(_SeriesInfoPrinter._create_table_builderry   r}   c                 C  s   |d u rdS |S d S )NTr   r~   r   r   r   rv     s    z*_SeriesInfoPrinter._initialize_show_counts)NN)rN   rO   rP   rQ   rX   rn   rv   r   r   r   r   rl     s     rl   c                   @  s   e Zd ZU dZded< ded< eddddZed	dd
dZeddddZ	eddddZ
eddddZeddddZeddddZddddZddddZddd d!Zd"S )#rt   z*
    Abstract builder for info table.
    	list[str]_linesr.   re   r2   c                 C  s   dS )z-Product in a form of list of lines (strings).Nr   r3   r   r   r   ro     s    z_TableBuilderAbstract.get_linesr/   c                 C  s   | j jS rL   re   r0   r3   r   r   r   r0     s    z_TableBuilderAbstract.datar1   c                 C  s   | j jS )z*Dtypes of each of the DataFrame's columns.)re   r5   r3   r   r   r   r5     s    z_TableBuilderAbstract.dtypesr6   c                 C  s   | j jS )r7   )re   r8   r3   r   r   r   r8     s    z"_TableBuilderAbstract.dtype_countsry   c                 C  s   t | jjS )z Whether to display memory usage.)ry   re   r,   r3   r   r   r   display_memory_usage  s    z*_TableBuilderAbstract.display_memory_usager   c                 C  s   | j jS )z/Memory usage string with proper size qualifier.)re   r>   r3   r   r   r   r>     s    z)_TableBuilderAbstract.memory_usage_stringr9   c                 C  s   | j jS rL   )re   r;   r3   r   r   r   r;     s    z%_TableBuilderAbstract.non_null_countsrF   c                 C  s   | j tt| j dS )z>Add line with string representation of dataframe to the table.N)r   appendr   typer0   r3   r   r   r   add_object_type_line  s    z*_TableBuilderAbstract.add_object_type_linec                 C  s   | j | jj  dS )z,Add line with range of indices to the table.N)r   r   r0   rB   _summaryr3   r   r   r   add_index_range_line  s    z*_TableBuilderAbstract.add_index_range_linec                 C  s4   dd t | j D }| jdd|  dS )z2Add summary line with dtypes present in dataframe.c                 S  s"   g | ]\}}| d |ddqS )(d)r   ).0keyvalr   r   r   
<listcomp>  s   z9_TableBuilderAbstract.add_dtypes_line.<locals>.<listcomp>zdtypes: z, N)sortedr8   itemsr   r   join)r4   Zcollected_dtypesr   r   r   add_dtypes_line  s    z%_TableBuilderAbstract.add_dtypes_lineN)rN   rO   rP   rQ   rR   r   ro   rS   r0   r5   r8   r   r>   r;   r   r   r   r   r   r   r   rt     s(   
rt   c                   @  s   e Zd ZdZdddddZddd	d
ZddddZeddddZe	ddddZ
e	ddddZe	ddddZddddZdS )r   z
    Abstract builder for dataframe info table.

    Parameters
    ----------
    info : DataFrameInfo.
        Instance of DataFrameInfo.
    rT   rF   re   r   c                C  s
   || _ d S rL   r   r4   re   r   r   r   rX     s    z_DataFrameTableBuilder.__init__r   r2   c                 C  s(   g | _ | jdkr|   n|   | j S )Nr   )r   r_   _fill_empty_info_fill_non_empty_infor3   r   r   r   ro     s
    

z _DataFrameTableBuilder.get_linesc                 C  s0   |    |   | jdt| jj d dS )z;Add lines to the info table, pertaining to empty dataframe.zEmpty r=   N)r   r   r   r   r   r0   rN   r3   r   r   r   r     s    z'_DataFrameTableBuilder._fill_empty_infoc                 C  s   dS z?Add lines to the info table, pertaining to non-empty dataframe.Nr   r3   r   r   r   r     s    z+_DataFrameTableBuilder._fill_non_empty_infor   c                 C  s   | j jS )z
DataFrame.r   r3   r   r   r   r0   #  s    z_DataFrameTableBuilder.datar   c                 C  s   | j jS )zDataframe columns.)re   r\   r3   r   r   r   r\   (  s    z_DataFrameTableBuilder.idsr   c                 C  s   | j jS )z-Number of dataframe columns to be summarized.r|   r3   r   r   r   r_   -  s    z _DataFrameTableBuilder.col_countc                 C  s   | j d| j  dS z!Add line containing memory usage.zmemory usage: Nr   r   r>   r3   r   r   r   add_memory_usage_line2  s    z,_DataFrameTableBuilder.add_memory_usage_lineN)rN   rO   rP   rQ   rX   ro   r   r   r   rS   r0   r\   r_   r   r   r   r   r   r     s   	r   c                   @  s,   e Zd ZdZddddZddddZdS )	r   z>
    Dataframe info table builder for non-verbose output.
    rF   r2   c                 C  s2   |    |   |   |   | jr.|   dS r   )r   r   add_columns_summary_liner   r   r   r3   r   r   r   r   <  s    z5_DataFrameTableBuilderNonVerbose._fill_non_empty_infoc                 C  s   | j | jjdd d S )NColumnsname)r   r   r\   r   r3   r   r   r   r   E  s    z9_DataFrameTableBuilderNonVerbose.add_columns_summary_lineN)rN   rO   rP   rQ   r   r   r   r   r   r   r   7  s   	r   c                   @  s   e Zd ZU dZdZded< ded< ded< d	ed
< eeddddZeddddZ	ddddZ
ddddZddddZeddddZeddddZddddZdddd Zddd!d"Zd#dd$d%Zd#dd&d'Zd(S ))_TableBuilderVerboseMixinz(
    Mixin for verbose info output.
    z  r   SPACINGzSequence[Sequence[str]]strrowsr9   gross_column_widthsry   r   Sequence[str]r2   c                 C  s   dS ).Headers names of the columns in verbose table.Nr   r3   r   r   r   headersS  s    z!_TableBuilderVerboseMixin.headersc                 C  s   dd | j D S )z'Widths of header columns (only titles).c                 S  s   g | ]}t |qS r   r^   r   colr   r   r   r   [      zB_TableBuilderVerboseMixin.header_column_widths.<locals>.<listcomp>)r   r3   r   r   r   header_column_widthsX  s    z._TableBuilderVerboseMixin.header_column_widthsc                 C  s   |   }dd t| j|D S )zAGet widths of columns containing both headers and actual content.c                 S  s   g | ]}t | qS r   max)r   widthsr   r   r   r   `  s   zF_TableBuilderVerboseMixin._get_gross_column_widths.<locals>.<listcomp>)_get_body_column_widthszipr   )r4   Zbody_column_widthsr   r   r   _get_gross_column_widths]  s    
z2_TableBuilderVerboseMixin._get_gross_column_widthsc                 C  s   t t| j }dd |D S )z$Get widths of table content columns.c                 S  s   g | ]}t d d |D qS )c                 s  s   | ]}t |V  qd S rL   r   )r   r(   r   r   r   	<genexpr>h  r   zO_TableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>.<genexpr>r   r   r   r   r   r   h  r   zE_TableBuilderVerboseMixin._get_body_column_widths.<locals>.<listcomp>)listr   r   )r4   Zstrcolsr   r   r   r   e  s    z1_TableBuilderVerboseMixin._get_body_column_widthsIterator[Sequence[str]]c                 C  s   | j r|  S |  S dS )z
        Generator function yielding rows content.

        Each element represents a row comprising a sequence of strings.
        N)r   _gen_rows_with_counts_gen_rows_without_countsr3   r   r   r   	_gen_rowsj  s    z#_TableBuilderVerboseMixin._gen_rowsc                 C  s   dS z=Iterator with string representation of body data with counts.Nr   r3   r   r   r   r   u  s    z/_TableBuilderVerboseMixin._gen_rows_with_countsc                 C  s   dS z@Iterator with string representation of body data without counts.Nr   r3   r   r   r   r   y  s    z2_TableBuilderVerboseMixin._gen_rows_without_countsrF   c                 C  s0   | j dd t| j| jD }| j| d S )Nc                 S  s   g | ]\}}t ||qS r   r   )r   headerZ	col_widthr   r   r   r     s   z=_TableBuilderVerboseMixin.add_header_line.<locals>.<listcomp>)r   r   r   r   r   r   r   )r4   Zheader_liner   r   r   add_header_line}  s    z)_TableBuilderVerboseMixin.add_header_linec                 C  s0   | j dd t| j| jD }| j| d S )Nc                 S  s   g | ]\}}t d | |qS )-r   )r   Zheader_colwidthgross_colwidthr   r   r   r     s   z@_TableBuilderVerboseMixin.add_separator_line.<locals>.<listcomp>)r   r   r   r   r   r   r   )r4   Zseparator_liner   r   r   add_separator_line  s    z,_TableBuilderVerboseMixin.add_separator_linec                 C  s:   | j D ].}| jdd t|| jD }| j| qd S )Nc                 S  s   g | ]\}}t ||qS r   r   )r   r   r   r   r   r   r     s   z<_TableBuilderVerboseMixin.add_body_lines.<locals>.<listcomp>)r   r   r   r   r   r   r   )r4   rowZ	body_liner   r   r   add_body_lines  s    

z(_TableBuilderVerboseMixin.add_body_linesIterator[str]c                 c  s   | j D ]}| dV  qdS )z7Iterator with string representation of non-null counts.z	 non-nullN)r;   )r4   ra   r   r   r   _gen_non_null_counts  s    
z._TableBuilderVerboseMixin._gen_non_null_countsc                 c  s   | j D ]}t|V  qdS )z5Iterator with string representation of column dtypes.N)r5   r
   )r4   Zdtyper   r   r   _gen_dtypes  s    
z%_TableBuilderVerboseMixin._gen_dtypesN)rN   rO   rP   rQ   r   rR   rS   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   I  s,   
	
r   c                   @  s   e Zd ZdZddddddZddd	d
ZeddddZddddZddddZ	ddddZ
ddddZddddZdS )r   z:
    Dataframe info table builder for verbose output.
    rT   ry   rF   re   r   r   c                C  s(   || _ || _t|  | _|  | _d S rL   re   r   r   r   r   r   r   r4   re   r   r   r   r   rX     s    z&_DataFrameTableBuilderVerbose.__init__r2   c                 C  sJ   |    |   |   |   |   |   |   | jrF|   dS r   )	r   r   r   r   r   r   r   r   r   r3   r   r   r   r     s    z2_DataFrameTableBuilderVerbose._fill_non_empty_infor   c                 C  s   | j rg dS g dS )r   ) # ColumnNon-Null Countr   )r   r   r   r   r3   r   r   r   r     s    z%_DataFrameTableBuilderVerbose.headersc                 C  s   | j d| j d d S )NzData columns (total z
 columns):)r   r   r_   r3   r   r   r   r     s    z6_DataFrameTableBuilderVerbose.add_columns_summary_liner   c                 c  s"   t |  |  |  E dH  dS r   )r   _gen_line_numbers_gen_columnsr   r3   r   r   r   r     s
    z6_DataFrameTableBuilderVerbose._gen_rows_without_countsc                 c  s(   t |  |  |  |  E dH  dS r   )r   r   r   r   r   r3   r   r   r   r     s    z3_DataFrameTableBuilderVerbose._gen_rows_with_countsr   c                 c  s$   t | jD ]\}}d| V  q
dS )z6Iterator with string representation of column numbers.r'   N)	enumerater\   )r4   i_r   r   r   r     s    z/_DataFrameTableBuilderVerbose._gen_line_numbersc                 c  s   | j D ]}t|V  qdS )z4Iterator with string representation of column names.N)r\   r
   )r4   r   r   r   r   r     s    
z*_DataFrameTableBuilderVerbose._gen_columnsN)rN   rO   rP   rQ   rX   r   rS   r   r   r   r   r   r   r   r   r   r   r     s   	r   c                   @  s`   e Zd ZdZdddddZddd	d
ZeddddZddddZe	ddddZ
dS )r   z
    Abstract builder for series info table.

    Parameters
    ----------
    info : SeriesInfo.
        Instance of SeriesInfo.
    rj   rF   r   c                C  s
   || _ d S rL   r   r   r   r   r   rX     s    z_SeriesTableBuilder.__init__r   r2   c                 C  s   g | _ |   | j S rL   )r   r   r3   r   r   r   ro     s    z_SeriesTableBuilder.get_linesr   c                 C  s   | j jS )zSeries.r   r3   r   r   r   r0     s    z_SeriesTableBuilder.datac                 C  s   | j d| j  dS r   r   r3   r   r   r   r     s    z)_SeriesTableBuilder.add_memory_usage_linec                 C  s   dS z<Add lines to the info table, pertaining to non-empty series.Nr   r3   r   r   r   r     s    z(_SeriesTableBuilder._fill_non_empty_infoN)rN   rO   rP   rQ   rX   ro   rS   r0   r   r   r   r   r   r   r   r     s   	r   c                   @  s   e Zd ZdZddddZdS )r   z;
    Series info table builder for non-verbose output.
    rF   r2   c                 C  s*   |    |   |   | jr&|   dS r   )r   r   r   r   r   r3   r   r   r   r     s
    z2_SeriesTableBuilderNonVerbose._fill_non_empty_infoN)rN   rO   rP   rQ   r   r   r   r   r   r     s   r   c                   @  sl   e Zd ZdZddddddZddd	d
ZddddZeddddZddddZ	ddddZ
dS )r   z7
    Series info table builder for verbose output.
    rj   ry   rF   r   c                C  s(   || _ || _t|  | _|  | _d S rL   r   r   r   r   r   rX     s    z#_SeriesTableBuilderVerbose.__init__r2   c                 C  sJ   |    |   |   |   |   |   |   | jrF|   dS r   )	r   r   add_series_name_liner   r   r   r   r   r   r3   r   r   r   r   &  s    z/_SeriesTableBuilderVerbose._fill_non_empty_infoc                 C  s   | j d| jj  d S )NzSeries name: )r   r   r0   r   r3   r   r   r   r   2  s    z/_SeriesTableBuilderVerbose.add_series_name_liner   c                 C  s   | j rddgS dgS )r   r   r   r   r3   r   r   r   r   5  s    z"_SeriesTableBuilderVerbose.headersr   c                 c  s   |   E dH  dS r   )r   r3   r   r   r   r   <  s    z3_SeriesTableBuilderVerbose._gen_rows_without_countsc                 c  s   t |  |  E dH  dS r   )r   r   r   r3   r   r   r   r   @  s    z0_SeriesTableBuilderVerbose._gen_rows_with_countsN)rN   rO   rP   rQ   rX   r   r   rS   r   r   r   r   r   r   r   r     s   r   r6   )dfr   c                 C  s   | j  dd  S )zK
    Create mapping between datatypes and their number of occurrences.
    c                 S  s   | j S rL   r   )r(   r   r   r   <lambda>M  r   z-_get_dataframe_dtype_counts.<locals>.<lambda>)r5   Zvalue_countsgroupbyrc   )r   r   r   r   rY   H  s    rY   )N)8
__future__r   abcr   r   rp   textwrapr   typingr   Zpandas._configr   Zpandas.io.formatsr	   rr   Zpandas.io.formats.printingr
   collections.abcr   r   r   r   Zpandas._typingr   r   Zpandasr   r   r   Zframe_max_cols_subr   Zframe_examples_subZframe_see_also_subZframe_sub_kwargsZseries_examples_subZseries_see_also_subZseries_sub_kwargsZINFO_DOCSTRINGr   r)   r-   r.   rT   rj   rm   rf   rl   rt   r   r   r   r   r   r   r   rY   r   r   r   r   <module>   s   
V	>3  	SI<P+83]B 2